Metamath Proof Explorer


Theorem ltmulgt12

Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)

Ref Expression
Assertion ltmulgt12 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵𝐴 < ( 𝐵 · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ltmulgt11 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵𝐴 < ( 𝐴 · 𝐵 ) ) )
2 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
3 recn ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ )
4 mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
5 2 3 4 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
6 5 3adant3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
7 6 breq2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 < ( 𝐴 · 𝐵 ) ↔ 𝐴 < ( 𝐵 · 𝐴 ) ) )
8 1 7 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵𝐴 < ( 𝐵 · 𝐴 ) ) )