Description: Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | ltmulgt12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐵 · 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmulgt11 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) | |
2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
4 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
5 | 2 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
7 | 6 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 < ( 𝐴 · 𝐵 ) ↔ 𝐴 < ( 𝐵 · 𝐴 ) ) ) |
8 | 1 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐵 · 𝐴 ) ) ) |