Step |
Hyp |
Ref |
Expression |
1 |
|
ltmulneg.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ltmulneg.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ltmulneg.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
ltmulneg.n |
⊢ ( 𝜑 → 𝐶 < 0 ) |
5 |
3 4
|
negelrpd |
⊢ ( 𝜑 → - 𝐶 ∈ ℝ+ ) |
6 |
1 2 5
|
ltmul1d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 · - 𝐶 ) < ( 𝐵 · - 𝐶 ) ) ) |
7 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝐶 ∈ ℝ ) |
8 |
1 7
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · - 𝐶 ) ∈ ℝ ) |
9 |
2 7
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · - 𝐶 ) ∈ ℝ ) |
10 |
8 9
|
ltnegd |
⊢ ( 𝜑 → ( ( 𝐴 · - 𝐶 ) < ( 𝐵 · - 𝐶 ) ↔ - ( 𝐵 · - 𝐶 ) < - ( 𝐴 · - 𝐶 ) ) ) |
11 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
12 |
7
|
recnd |
⊢ ( 𝜑 → - 𝐶 ∈ ℂ ) |
13 |
11 12
|
mulneg2d |
⊢ ( 𝜑 → ( 𝐵 · - - 𝐶 ) = - ( 𝐵 · - 𝐶 ) ) |
14 |
3
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
15 |
14
|
negnegd |
⊢ ( 𝜑 → - - 𝐶 = 𝐶 ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · - - 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
17 |
13 16
|
eqtr3d |
⊢ ( 𝜑 → - ( 𝐵 · - 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
18 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
19 |
18 12
|
mulneg2d |
⊢ ( 𝜑 → ( 𝐴 · - - 𝐶 ) = - ( 𝐴 · - 𝐶 ) ) |
20 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · - - 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
21 |
19 20
|
eqtr3d |
⊢ ( 𝜑 → - ( 𝐴 · - 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
22 |
17 21
|
breq12d |
⊢ ( 𝜑 → ( - ( 𝐵 · - 𝐶 ) < - ( 𝐴 · - 𝐶 ) ↔ ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) ) |
23 |
6 10 22
|
3bitrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) ) |