Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr | ⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴 ) | |
| 2 | breq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐴 < 𝐵 ↔ 𝐴 < 𝐴 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝐵 = 𝐴 → ( ¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴 ) ) |
| 4 | 1 3 | syl5ibrcom | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 = 𝐴 → ¬ 𝐴 < 𝐵 ) ) |
| 5 | 4 | necon2ad | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) |