Metamath Proof Explorer


Theorem ltne

Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion ltne ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 ltnr ( 𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴 )
2 breq2 ( 𝐵 = 𝐴 → ( 𝐴 < 𝐵𝐴 < 𝐴 ) )
3 2 notbid ( 𝐵 = 𝐴 → ( ¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴 ) )
4 1 3 syl5ibrcom ( 𝐴 ∈ ℝ → ( 𝐵 = 𝐴 → ¬ 𝐴 < 𝐵 ) )
5 4 necon2ad ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐵𝐵𝐴 ) )
6 5 imp ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵𝐴 )