Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltned.2 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | ltned | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltned.2 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 3 | 1 2 | gtned | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) | 
| 4 | 3 | necomd | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |