Metamath Proof Explorer


Theorem ltned

Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltned.2 ( 𝜑𝐴 < 𝐵 )
Assertion ltned ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltned.2 ( 𝜑𝐴 < 𝐵 )
3 1 2 gtned ( 𝜑𝐵𝐴 )
4 3 necomd ( 𝜑𝐴𝐵 )