Metamath Proof Explorer


Theorem ltneg

Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by NM, 27-Aug-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 ltsub2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 0 − 𝐵 ) < ( 0 − 𝐴 ) ) )
3 1 2 mp3an3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 0 − 𝐵 ) < ( 0 − 𝐴 ) ) )
4 df-neg - 𝐵 = ( 0 − 𝐵 )
5 df-neg - 𝐴 = ( 0 − 𝐴 )
6 4 5 breq12i ( - 𝐵 < - 𝐴 ↔ ( 0 − 𝐵 ) < ( 0 − 𝐴 ) )
7 3 6 bitr4di ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) )