Description: Contraposition of negative in 'less than'. (Contributed by NM, 14-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
lt2.2 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | ltnegcon2i | ⊢ ( 𝐴 < - 𝐵 ↔ 𝐵 < - 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2.1 | ⊢ 𝐴 ∈ ℝ | |
2 | lt2.2 | ⊢ 𝐵 ∈ ℝ | |
3 | ltnegcon2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < - 𝐵 ↔ 𝐵 < - 𝐴 ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( 𝐴 < - 𝐵 ↔ 𝐵 < - 𝐴 ) |