Metamath Proof Explorer


Theorem ltnegcon2i

Description: Contraposition of negative in 'less than'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
Assertion ltnegcon2i ( 𝐴 < - 𝐵𝐵 < - 𝐴 )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 ltnegcon2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < - 𝐵𝐵 < - 𝐴 ) )
4 1 2 3 mp2an ( 𝐴 < - 𝐵𝐵 < - 𝐴 )