Metamath Proof Explorer


Theorem ltnegi

Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by NM, 21-Jan-1997)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
Assertion ltnegi ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 lt2.2 𝐵 ∈ ℝ
3 ltneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) )
4 1 2 3 mp2an ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 )