Metamath Proof Explorer
Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20.
(Contributed by NM, 21-Jan-1997)
|
|
Ref |
Expression |
|
Hypotheses |
lt2.1 |
⊢ 𝐴 ∈ ℝ |
|
|
lt2.2 |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
ltnegi |
⊢ ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt2.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
lt2.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
ltneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) |