Description: 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| lt.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | ltnei | ⊢ ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | ltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) | |
| 4 | 1 3 | mpan | ⊢ ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) |