Metamath Proof Explorer


Theorem ltneii

Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
ltneii.2 𝐴 < 𝐵
Assertion ltneii 𝐴𝐵

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 ltneii.2 𝐴 < 𝐵
3 1 2 gtneii 𝐵𝐴
4 3 necomi 𝐴𝐵