| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltnelicc.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ltnelicc.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | ltnelicc.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 4 |  | ltnelicc.clta | ⊢ ( 𝜑  →  𝐶  <  𝐴 ) | 
						
							| 5 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 6 |  | xrltnle | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐶  <  𝐴  ↔  ¬  𝐴  ≤  𝐶 ) ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  <  𝐴  ↔  ¬  𝐴  ≤  𝐶 ) ) | 
						
							| 8 | 4 7 | mpbid | ⊢ ( 𝜑  →  ¬  𝐴  ≤  𝐶 ) | 
						
							| 9 | 8 | intnanrd | ⊢ ( 𝜑  →  ¬  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 10 |  | elicc4 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 11 | 5 2 3 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 12 | 9 11 | mtbird | ⊢ ( 𝜑  →  ¬  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) |