Metamath Proof Explorer


Theorem ltnled

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion ltnled ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltnle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )