Metamath Proof Explorer


Theorem ltnlei

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion ltnlei ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 2 1 lenlti ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 )
4 3 con2bii ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 )