Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
ltnr
Next ⟩
leid
Metamath Proof Explorer
Ascii
Structured
Theorem
ltnr
Description:
'Less than' is irreflexive.
(Contributed by
NM
, 18-Aug-1999)
Ref
Expression
Assertion
ltnr
⊢
(
𝐴
∈ ℝ → ¬
𝐴
<
𝐴
)
Proof
Step
Hyp
Ref
Expression
1
ltso
⊢
< Or ℝ
2
sonr
⊢
( ( < Or ℝ ∧
𝐴
∈ ℝ ) → ¬
𝐴
<
𝐴
)
3
1
2
mpan
⊢
(
𝐴
∈ ℝ → ¬
𝐴
<
𝐴
)