Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltnsym | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 2 | pm2.46 | ⊢ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ¬ 𝐵 < 𝐴 ) | |
| 3 | 1 2 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |