Metamath Proof Explorer


Theorem ltnsym2

Description: 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ltnsym2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 so2nr ( ( < Or ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) )
3 1 2 mpan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ ( 𝐴 < 𝐵𝐵 < 𝐴 ) )