Metamath Proof Explorer


Theorem ltnsymd

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltd.2 ( 𝜑𝐵 ∈ ℝ )
ltled.1 ( 𝜑𝐴 < 𝐵 )
Assertion ltnsymd ( 𝜑 → ¬ 𝐵 < 𝐴 )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltled.1 ( 𝜑𝐴 < 𝐵 )
4 1 2 3 ltled ( 𝜑𝐴𝐵 )
5 1 2 lenltd ( 𝜑 → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
6 4 5 mpbid ( 𝜑 → ¬ 𝐵 < 𝐴 )