Metamath Proof Explorer


Theorem ltnsymi

Description: 'Less than' is not symmetric. (Contributed by NM, 6-May-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion ltnsymi ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 ltnsym ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) )
4 1 2 3 mp2an ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 )