Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
2 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( 1 / 2 ) ∈ ℝ ) |
4 |
|
1red |
⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℝ ) |
5 |
|
zre |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) |
6 |
3 4 5
|
3jca |
⊢ ( 𝑛 ∈ ℤ → ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
8 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
9 |
|
axltadd |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 1 / 2 ) < 1 → ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) ) |
10 |
7 8 9
|
mpisyl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) |
11 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
12 |
11
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
13 |
5 3
|
readdcld |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) |
15 |
|
peano2z |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + 1 ) ∈ ℤ ) |
16 |
15
|
zred |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 + 1 ) ∈ ℝ ) |
17 |
16
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑛 + 1 ) ∈ ℝ ) |
18 |
|
lttr |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ∧ ( 𝑛 + 1 ) ∈ ℝ ) → ( ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ∧ ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
19 |
12 14 17 18
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ∧ ( 𝑛 + ( 1 / 2 ) ) < ( 𝑛 + 1 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
20 |
10 19
|
mpan2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) → 𝑀 < ( 𝑛 + 1 ) ) ) |
21 |
|
zleltp1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 ↔ 𝑀 < ( 𝑛 + 1 ) ) ) |
22 |
21
|
ancoms |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 ↔ 𝑀 < ( 𝑛 + 1 ) ) ) |
23 |
20 22
|
sylibrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) → 𝑀 ≤ 𝑛 ) ) |
24 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
25 |
3 5
|
jca |
⊢ ( 𝑛 ∈ ℤ → ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) |
27 |
|
ltaddpos |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 0 < ( 1 / 2 ) ↔ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 0 < ( 1 / 2 ) ↔ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
29 |
24 28
|
mpbii |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) |
30 |
5
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
31 |
|
lelttr |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 𝑛 + ( 1 / 2 ) ) ∈ ℝ ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
32 |
12 30 14 31
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 < ( 𝑛 + ( 1 / 2 ) ) ) → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
33 |
29 32
|
mpan2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑛 → 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
34 |
23 33
|
impbid |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ↔ 𝑀 ≤ 𝑛 ) ) |
35 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
36 |
|
1cnd |
⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℂ ) |
37 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
38 |
37
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
39 |
|
muldivdir |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
40 |
35 36 38 39
|
syl3anc |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑛 + ( 1 / 2 ) ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑛 ∈ ℤ → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑛 + ( 1 / 2 ) ) ) ) |
43 |
|
2z |
⊢ 2 ∈ ℤ |
44 |
43
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
45 |
|
id |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) |
46 |
44 45
|
zmulcld |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
47 |
46
|
zcnd |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℂ ) |
48 |
47
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℂ ) |
49 |
|
pncan1 |
⊢ ( ( 2 · 𝑛 ) ∈ ℂ → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
51 |
50
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
52 |
|
2cnd |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) |
53 |
|
2ne0 |
⊢ 2 ≠ 0 |
54 |
53
|
a1i |
⊢ ( 𝑛 ∈ ℤ → 2 ≠ 0 ) |
55 |
35 52 54
|
divcan3d |
⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
56 |
55
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
57 |
51 56
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = 𝑛 ) |
58 |
57
|
breq2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ↔ 𝑀 ≤ 𝑛 ) ) |
59 |
34 42 58
|
3bitr4d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
60 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) = ( 𝑁 / 2 ) ) |
61 |
60
|
breq2d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 < ( 𝑁 / 2 ) ) ) |
62 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 𝑁 − 1 ) ) |
63 |
62
|
oveq1d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 𝑁 − 1 ) / 2 ) ) |
64 |
63
|
breq2d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |
65 |
61 64
|
bibi12d |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( 𝑀 < ( ( ( 2 · 𝑛 ) + 1 ) / 2 ) ↔ 𝑀 ≤ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ↔ ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
66 |
59 65
|
syl5ibcom |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) |
67 |
66
|
ex |
⊢ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
69 |
68
|
com23 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
70 |
69
|
rexlimdva |
⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
71 |
1 70
|
sylbid |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 → ( 𝑀 ∈ ℤ → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) ) ) |
72 |
71
|
3imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < ( 𝑁 / 2 ) ↔ 𝑀 ≤ ( ( 𝑁 − 1 ) / 2 ) ) ) |