Step |
Hyp |
Ref |
Expression |
1 |
|
ltord.1 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
2 |
|
ltord.2 |
⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) |
3 |
|
ltord.3 |
⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) |
4 |
|
ltord.4 |
⊢ 𝑆 ⊆ ℝ |
5 |
|
ltord.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
6 |
|
ltord.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐴 < 𝐵 ) ) |
7 |
1 2 3 4 5 6
|
ltordlem |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 → 𝑀 < 𝑁 ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
9 |
2
|
eqeq1d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 = 𝑁 ↔ 𝑀 = 𝑁 ) ) |
10 |
8 9
|
imbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) ↔ ( 𝐶 = 𝐷 → 𝑀 = 𝑁 ) ) ) |
11 |
10 3
|
vtoclg |
⊢ ( 𝐶 ∈ 𝑆 → ( 𝐶 = 𝐷 → 𝑀 = 𝑁 ) ) |
12 |
11
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 = 𝐷 → 𝑀 = 𝑁 ) ) |
13 |
1 3 2 4 5 6
|
ltordlem |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 𝐷 < 𝐶 → 𝑁 < 𝑀 ) ) |
14 |
13
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐷 < 𝐶 → 𝑁 < 𝑀 ) ) |
15 |
12 14
|
orim12d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) → ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) ) |
16 |
15
|
con3d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( ¬ ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) → ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
17 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ) |
18 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ ) ) |
19 |
18
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
20 |
17 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
21 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐷 → ( 𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ ) ) |
22 |
21
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
23 |
17 22
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
24 |
20 23
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
25 |
|
axlttri |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 ↔ ¬ ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑀 < 𝑁 ↔ ¬ ( 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) ) |
27 |
4
|
sseli |
⊢ ( 𝐶 ∈ 𝑆 → 𝐶 ∈ ℝ ) |
28 |
4
|
sseli |
⊢ ( 𝐷 ∈ 𝑆 → 𝐷 ∈ ℝ ) |
29 |
|
axlttri |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐶 < 𝐷 ↔ ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
30 |
27 28 29
|
syl2an |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → ( 𝐶 < 𝐷 ↔ ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ ¬ ( 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) ) |
32 |
16 26 31
|
3imtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑀 < 𝑁 → 𝐶 < 𝐷 ) ) |
33 |
7 32
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ 𝑀 < 𝑁 ) ) |