Step |
Hyp |
Ref |
Expression |
1 |
|
ltord.1 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
2 |
|
ltord.2 |
⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝑀 ) |
3 |
|
ltord.3 |
⊢ ( 𝑥 = 𝐷 → 𝐴 = 𝑁 ) |
4 |
|
ltord.4 |
⊢ 𝑆 ⊆ ℝ |
5 |
|
ltord.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
6 |
|
ltord2.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → 𝐵 < 𝐴 ) ) |
7 |
1
|
negeqd |
⊢ ( 𝑥 = 𝑦 → - 𝐴 = - 𝐵 ) |
8 |
2
|
negeqd |
⊢ ( 𝑥 = 𝐶 → - 𝐴 = - 𝑀 ) |
9 |
3
|
negeqd |
⊢ ( 𝑥 = 𝐷 → - 𝐴 = - 𝑁 ) |
10 |
5
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → - 𝐴 ∈ ℝ ) |
11 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ) |
12 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
13 |
12
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝑦 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
14 |
11 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
15 |
14
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐵 ∈ ℝ ) |
16 |
5
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐴 ∈ ℝ ) |
17 |
|
ltneg |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ - 𝐴 < - 𝐵 ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐵 < 𝐴 ↔ - 𝐴 < - 𝐵 ) ) |
19 |
6 18
|
sylibd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 < 𝑦 → - 𝐴 < - 𝐵 ) ) |
20 |
7 8 9 4 10 19
|
ltord1 |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ - 𝑀 < - 𝑁 ) ) |
21 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐷 → ( 𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ ) ) |
22 |
21
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
23 |
11 22
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝑆 ) → 𝑁 ∈ ℝ ) |
24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → 𝑁 ∈ ℝ ) |
25 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ ) ) |
26 |
25
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
27 |
11 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑆 ) → 𝑀 ∈ ℝ ) |
28 |
27
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → 𝑀 ∈ ℝ ) |
29 |
|
ltneg |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁 < 𝑀 ↔ - 𝑀 < - 𝑁 ) ) |
30 |
24 28 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝑁 < 𝑀 ↔ - 𝑀 < - 𝑁 ) ) |
31 |
20 30
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝐶 < 𝐷 ↔ 𝑁 < 𝑀 ) ) |