Metamath Proof Explorer


Theorem ltp1i

Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001)

Ref Expression
Hypothesis ltplus1.1 𝐴 ∈ ℝ
Assertion ltp1i 𝐴 < ( 𝐴 + 1 )

Proof

Step Hyp Ref Expression
1 ltplus1.1 𝐴 ∈ ℝ
2 ltp1 ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) )
3 1 2 ax-mp 𝐴 < ( 𝐴 + 1 )