Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ltpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti | ⊢ <N = ( E ∩ ( N × N ) ) | |
2 | 1 | breqi | ⊢ ( 𝐴 <N 𝐵 ↔ 𝐴 ( E ∩ ( N × N ) ) 𝐵 ) |
3 | brinxp | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 E 𝐵 ↔ 𝐴 ( E ∩ ( N × N ) ) 𝐵 ) ) | |
4 | epelg | ⊢ ( 𝐵 ∈ N → ( 𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
6 | 3 5 | bitr3d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ( E ∩ ( N × N ) ) 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
7 | 2 6 | syl5bb | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |