Metamath Proof Explorer


Theorem ltpiord

Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion ltpiord ( ( 𝐴N𝐵N ) → ( 𝐴 <N 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-lti <N = ( E ∩ ( N × N ) )
2 1 breqi ( 𝐴 <N 𝐵𝐴 ( E ∩ ( N × N ) ) 𝐵 )
3 brinxp ( ( 𝐴N𝐵N ) → ( 𝐴 E 𝐵𝐴 ( E ∩ ( N × N ) ) 𝐵 ) )
4 epelg ( 𝐵N → ( 𝐴 E 𝐵𝐴𝐵 ) )
5 4 adantl ( ( 𝐴N𝐵N ) → ( 𝐴 E 𝐵𝐴𝐵 ) )
6 3 5 bitr3d ( ( 𝐴N𝐵N ) → ( 𝐴 ( E ∩ ( N × N ) ) 𝐵𝐴𝐵 ) )
7 2 6 syl5bb ( ( 𝐴N𝐵N ) → ( 𝐴 <N 𝐵𝐴𝐵 ) )