| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ +∞ = +∞ |
| 2 |
|
orc |
⊢ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) → ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) |
| 4 |
3
|
olcd |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ 𝐴 <ℝ +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) ) |
| 5 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
|
ltxr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 < +∞ ↔ ( ( ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ 𝐴 <ℝ +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) ) ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < +∞ ↔ ( ( ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ 𝐴 <ℝ +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) ) ) |
| 9 |
4 8
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |