Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ltpnfd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
Assertion | ltpnfd | ⊢ ( 𝜑 → 𝐴 < +∞ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnfd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐴 < +∞ ) |