Metamath Proof Explorer


Theorem ltpnfd

Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis ltpnfd.a ( 𝜑𝐴 ∈ ℝ )
Assertion ltpnfd ( 𝜑𝐴 < +∞ )

Proof

Step Hyp Ref Expression
1 ltpnfd.a ( 𝜑𝐴 ∈ ℝ )
2 ltpnf ( 𝐴 ∈ ℝ → 𝐴 < +∞ )
3 1 2 syl ( 𝜑𝐴 < +∞ )