Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltpnfd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| Assertion | ltpnfd | ⊢ ( 𝜑 → 𝐴 < +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltpnfd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐴 < +∞ ) |