Metamath Proof Explorer


Theorem ltprord

Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltprord ( ( 𝐴P𝐵P ) → ( 𝐴 <P 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑥 = 𝐴 → ( 𝑥P𝐴P ) )
2 1 anbi1d ( 𝑥 = 𝐴 → ( ( 𝑥P𝑦P ) ↔ ( 𝐴P𝑦P ) ) )
3 psseq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦𝐴𝑦 ) )
4 2 3 anbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) ↔ ( ( 𝐴P𝑦P ) ∧ 𝐴𝑦 ) ) )
5 eleq1 ( 𝑦 = 𝐵 → ( 𝑦P𝐵P ) )
6 5 anbi2d ( 𝑦 = 𝐵 → ( ( 𝐴P𝑦P ) ↔ ( 𝐴P𝐵P ) ) )
7 psseq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦𝐴𝐵 ) )
8 6 7 anbi12d ( 𝑦 = 𝐵 → ( ( ( 𝐴P𝑦P ) ∧ 𝐴𝑦 ) ↔ ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) ) )
9 df-ltp <P = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) }
10 4 8 9 brabg ( ( 𝐴P𝐵P ) → ( 𝐴 <P 𝐵 ↔ ( ( 𝐴P𝐵P ) ∧ 𝐴𝐵 ) ) )
11 10 bianabs ( ( 𝐴P𝐵P ) → ( 𝐴 <P 𝐵𝐴𝐵 ) )