Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ P ↔ 𝐴 ∈ P ) ) |
2 |
1
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ↔ ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ) ) |
3 |
|
psseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) ↔ ( ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝐴 ⊊ 𝑦 ) ) ) |
5 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ P ↔ 𝐵 ∈ P ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ↔ ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ) ) |
7 |
|
psseq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝐴 ⊊ 𝑦 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) ) ) |
9 |
|
df-ltp |
⊢ <P = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } |
10 |
4 8 9
|
brabg |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ 𝐴 ⊊ 𝐵 ) ) ) |
11 |
10
|
bianabs |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 <P 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |