Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 1 ∈ ℝ ) |
2 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
4 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐴 ) |
5 |
|
ltmuldiv |
⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( 1 · 𝐴 ) < 𝐵 ↔ 1 < ( 𝐵 / 𝐴 ) ) ) |
6 |
1 2 3 4 5
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 · 𝐴 ) < 𝐵 ↔ 1 < ( 𝐵 / 𝐴 ) ) ) |
7 |
3
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
8 |
7
|
mulid2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
9 |
8
|
breq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 · 𝐴 ) < 𝐵 ↔ 𝐴 < 𝐵 ) ) |
10 |
2
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
11 |
4
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ≠ 0 ) |
12 |
10 7 11
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 / 𝐴 ) = ( 𝐵 · ( 1 / 𝐴 ) ) ) |
13 |
12
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 < ( 𝐵 / 𝐴 ) ↔ 1 < ( 𝐵 · ( 1 / 𝐴 ) ) ) ) |
14 |
6 9 13
|
3bitr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ 1 < ( 𝐵 · ( 1 / 𝐴 ) ) ) ) |
15 |
3 11
|
rereccld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / 𝐴 ) ∈ ℝ ) |
16 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) |
17 |
|
ltdivmul |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ 1 < ( 𝐵 · ( 1 / 𝐴 ) ) ) ) |
18 |
1 15 2 16 17
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ↔ 1 < ( 𝐵 · ( 1 / 𝐴 ) ) ) ) |
19 |
14 18
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |