Description: Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
ltrec1d.2 | ⊢ ( 𝜑 → ( 1 / 𝐴 ) < 𝐵 ) | ||
Assertion | ltrec1d | ⊢ ( 𝜑 → ( 1 / 𝐵 ) < 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) | |
2 | rpaddcld.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
3 | ltrec1d.2 | ⊢ ( 𝜑 → ( 1 / 𝐴 ) < 𝐵 ) | |
4 | 1 | rpregt0d | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
5 | 2 | rpregt0d | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
6 | ltrec1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < 𝐴 ) ) | |
7 | 4 5 6 | syl2anc | ⊢ ( 𝜑 → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < 𝐴 ) ) |
8 | 3 7 | mpbid | ⊢ ( 𝜑 → ( 1 / 𝐵 ) < 𝐴 ) |