Metamath Proof Explorer


Theorem ltrec1d

Description: Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
ltrec1d.2 ( 𝜑 → ( 1 / 𝐴 ) < 𝐵 )
Assertion ltrec1d ( 𝜑 → ( 1 / 𝐵 ) < 𝐴 )

Proof

Step Hyp Ref Expression
1 rpred.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpaddcld.1 ( 𝜑𝐵 ∈ ℝ+ )
3 ltrec1d.2 ( 𝜑 → ( 1 / 𝐴 ) < 𝐵 )
4 1 rpregt0d ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
5 2 rpregt0d ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) )
6 ltrec1 ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < 𝐴 ) )
7 4 5 6 syl2anc ( 𝜑 → ( ( 1 / 𝐴 ) < 𝐵 ↔ ( 1 / 𝐵 ) < 𝐴 ) )
8 3 7 mpbid ( 𝜑 → ( 1 / 𝐵 ) < 𝐴 )