Metamath Proof Explorer


Theorem ltreci

Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)

Ref Expression
Hypotheses ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
Assertion ltreci ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1 𝐴 ∈ ℝ
2 prodgt0.2 𝐵 ∈ ℝ
3 ltrec ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) )
4 2 3 mpanr1 ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) )
5 1 4 mpanl1 ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) )