Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
prodgt0.2 | ⊢ 𝐵 ∈ ℝ | ||
Assertion | ltreci | ⊢ ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
2 | prodgt0.2 | ⊢ 𝐵 ∈ ℝ | |
3 | ltrec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) | |
4 | 2 3 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
5 | 1 4 | mpanl1 | ⊢ ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |