Metamath Proof Explorer
Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)
|
|
Ref |
Expression |
|
Hypotheses |
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
|
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
|
|
ltreci.3 |
⊢ 0 < 𝐴 |
|
|
ltreci.4 |
⊢ 0 < 𝐵 |
|
Assertion |
ltrecii |
⊢ ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
ltreci.3 |
⊢ 0 < 𝐴 |
4 |
|
ltreci.4 |
⊢ 0 < 𝐵 |
5 |
1 2
|
ltreci |
⊢ ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( 𝐴 < 𝐵 ↔ ( 1 / 𝐵 ) < ( 1 / 𝐴 ) ) |