Metamath Proof Explorer
		
		
		
		Description:  The reciprocal of both sides of 'less than'.  (Contributed by NM, 15-Sep-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
					
						|  |  | ltreci.3 | ⊢ 0  <  𝐴 | 
					
						|  |  | ltreci.4 | ⊢ 0  <  𝐵 | 
				
					|  | Assertion | ltrecii | ⊢  ( 𝐴  <  𝐵  ↔  ( 1  /  𝐵 )  <  ( 1  /  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltplus1.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | prodgt0.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | ltreci.3 | ⊢ 0  <  𝐴 | 
						
							| 4 |  | ltreci.4 | ⊢ 0  <  𝐵 | 
						
							| 5 | 1 2 | ltreci | ⊢ ( ( 0  <  𝐴  ∧  0  <  𝐵 )  →  ( 𝐴  <  𝐵  ↔  ( 1  /  𝐵 )  <  ( 1  /  𝐴 ) ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( 𝐴  <  𝐵  ↔  ( 1  /  𝐵 )  <  ( 1  /  𝐴 ) ) |