Metamath Proof Explorer


Theorem ltrel

Description: "Less than" is a relation. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion ltrel Rel <

Proof

Step Hyp Ref Expression
1 ltrelxr < ⊆ ( ℝ* × ℝ* )
2 relxp Rel ( ℝ* × ℝ* )
3 relss ( < ⊆ ( ℝ* × ℝ* ) → ( Rel ( ℝ* × ℝ* ) → Rel < ) )
4 1 2 3 mp2 Rel <