Metamath Proof Explorer


Theorem ltrelpi

Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelpi <N ⊆ ( N × N )

Proof

Step Hyp Ref Expression
1 df-lti <N = ( E ∩ ( N × N ) )
2 inss2 ( E ∩ ( N × N ) ) ⊆ ( N × N )
3 1 2 eqsstri <N ⊆ ( N × N )