Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrelpr | ⊢ <P ⊆ ( P × P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltp | ⊢ <P = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } | |
| 2 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } ⊆ ( P × P ) | |
| 3 | 1 2 | eqsstri | ⊢ <P ⊆ ( P × P ) |