Metamath Proof Explorer


Theorem ltrelpr

Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelpr <P ⊆ ( P × P )

Proof

Step Hyp Ref Expression
1 df-ltp <P = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) }
2 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥P𝑦P ) ∧ 𝑥𝑦 ) } ⊆ ( P × P )
3 1 2 eqsstri <P ⊆ ( P × P )