Metamath Proof Explorer


Theorem ltrelre

Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelre < ⊆ ( ℝ × ℝ )

Proof

Step Hyp Ref Expression
1 df-lt < = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) }
2 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) } ⊆ ( ℝ × ℝ )
3 1 2 eqsstri < ⊆ ( ℝ × ℝ )