Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ltrelre | ⊢ <ℝ ⊆ ( ℝ × ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lt | ⊢ <ℝ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 〈 𝑧 , 0R 〉 ∧ 𝑦 = 〈 𝑤 , 0R 〉 ) ∧ 𝑧 <R 𝑤 ) ) } | |
2 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 〈 𝑧 , 0R 〉 ∧ 𝑦 = 〈 𝑤 , 0R 〉 ) ∧ 𝑧 <R 𝑤 ) ) } ⊆ ( ℝ × ℝ ) | |
3 | 1 2 | eqsstri | ⊢ <ℝ ⊆ ( ℝ × ℝ ) |