Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ltrelsr | ⊢ <R ⊆ ( R × R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr | ⊢ <R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = [ 〈 𝑧 , 𝑤 〉 ] ~R ∧ 𝑦 = [ 〈 𝑣 , 𝑢 〉 ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) } | |
2 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = [ 〈 𝑧 , 𝑤 〉 ] ~R ∧ 𝑦 = [ 〈 𝑣 , 𝑢 〉 ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) } ⊆ ( R × R ) | |
3 | 1 2 | eqsstri | ⊢ <R ⊆ ( R × R ) |