Metamath Proof Explorer


Theorem ltrelsr

Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelsr <R ⊆ ( R × R )

Proof

Step Hyp Ref Expression
1 df-ltr <R = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) }
2 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑧𝑤𝑣𝑢 ( ( 𝑥 = [ ⟨ 𝑧 , 𝑤 ⟩ ] ~R𝑦 = [ ⟨ 𝑣 , 𝑢 ⟩ ] ~R ) ∧ ( 𝑧 +P 𝑢 ) <P ( 𝑤 +P 𝑣 ) ) ) } ⊆ ( R × R )
3 1 2 eqsstri <R ⊆ ( R × R )