Metamath Proof Explorer


Theorem ltresr

Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltresr ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ 𝐴 <R 𝐵 )

Proof

Step Hyp Ref Expression
1 ltrelre < ⊆ ( ℝ × ℝ )
2 1 brel ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ → ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) )
3 opelreal ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ↔ 𝐴R )
4 opelreal ( ⟨ 𝐵 , 0R ⟩ ∈ ℝ ↔ 𝐵R )
5 3 4 anbi12i ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) ↔ ( 𝐴R𝐵R ) )
6 2 5 sylib ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ → ( 𝐴R𝐵R ) )
7 ltrelsr <R ⊆ ( R × R )
8 7 brel ( 𝐴 <R 𝐵 → ( 𝐴R𝐵R ) )
9 opex 𝐴 , 0R ⟩ ∈ V
10 opex 𝐵 , 0R ⟩ ∈ V
11 eleq1 ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( 𝑥 ∈ ℝ ↔ ⟨ 𝐴 , 0R ⟩ ∈ ℝ ) )
12 11 anbi1d ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ↔ ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) )
13 eqeq1 ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ↔ ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ) )
14 13 anbi1d ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ↔ ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ) )
15 14 anbi1d ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ↔ ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) )
16 15 2exbidv ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ↔ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) )
17 12 16 anbi12d ( 𝑥 = ⟨ 𝐴 , 0R ⟩ → ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) ↔ ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) ) )
18 eleq1 ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( 𝑦 ∈ ℝ ↔ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) )
19 18 anbi2d ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ ) ↔ ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) ) )
20 eqeq1 ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( 𝑦 = ⟨ 𝑤 , 0R ⟩ ↔ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) )
21 20 anbi2d ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ↔ ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ) )
22 21 anbi1d ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ↔ ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) )
23 22 2exbidv ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ↔ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) )
24 19 23 anbi12d ( 𝑦 = ⟨ 𝐵 , 0R ⟩ → ( ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) ↔ ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) ) )
25 df-lt < = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( 𝑥 = ⟨ 𝑧 , 0R ⟩ ∧ 𝑦 = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) }
26 9 10 17 24 25 brab ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) ∧ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) )
27 26 baib ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) → ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ) )
28 vex 𝑧 ∈ V
29 28 eqresr ( ⟨ 𝑧 , 0R ⟩ = ⟨ 𝐴 , 0R ⟩ ↔ 𝑧 = 𝐴 )
30 eqcom ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ↔ ⟨ 𝑧 , 0R ⟩ = ⟨ 𝐴 , 0R ⟩ )
31 eqcom ( 𝐴 = 𝑧𝑧 = 𝐴 )
32 29 30 31 3bitr4i ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ↔ 𝐴 = 𝑧 )
33 vex 𝑤 ∈ V
34 33 eqresr ( ⟨ 𝑤 , 0R ⟩ = ⟨ 𝐵 , 0R ⟩ ↔ 𝑤 = 𝐵 )
35 eqcom ( ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ↔ ⟨ 𝑤 , 0R ⟩ = ⟨ 𝐵 , 0R ⟩ )
36 eqcom ( 𝐵 = 𝑤𝑤 = 𝐵 )
37 34 35 36 3bitr4i ( ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ↔ 𝐵 = 𝑤 )
38 32 37 anbi12i ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ↔ ( 𝐴 = 𝑧𝐵 = 𝑤 ) )
39 28 33 opth2 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ ↔ ( 𝐴 = 𝑧𝐵 = 𝑤 ) )
40 38 39 bitr4i ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ↔ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ )
41 40 anbi1i ( ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 <R 𝑤 ) )
42 41 2exbii ( ∃ 𝑧𝑤 ( ( ⟨ 𝐴 , 0R ⟩ = ⟨ 𝑧 , 0R ⟩ ∧ ⟨ 𝐵 , 0R ⟩ = ⟨ 𝑤 , 0R ⟩ ) ∧ 𝑧 <R 𝑤 ) ↔ ∃ 𝑧𝑤 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 <R 𝑤 ) )
43 27 42 bitrdi ( ( ⟨ 𝐴 , 0R ⟩ ∈ ℝ ∧ ⟨ 𝐵 , 0R ⟩ ∈ ℝ ) → ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ ∃ 𝑧𝑤 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 <R 𝑤 ) ) )
44 3 4 43 syl2anbr ( ( 𝐴R𝐵R ) → ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ ∃ 𝑧𝑤 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 <R 𝑤 ) ) )
45 breq12 ( ( 𝑧 = 𝐴𝑤 = 𝐵 ) → ( 𝑧 <R 𝑤𝐴 <R 𝐵 ) )
46 45 copsex2g ( ( 𝐴R𝐵R ) → ( ∃ 𝑧𝑤 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 <R 𝑤 ) ↔ 𝐴 <R 𝐵 ) )
47 44 46 bitrd ( ( 𝐴R𝐵R ) → ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ 𝐴 <R 𝐵 ) )
48 6 8 47 pm5.21nii ( ⟨ 𝐴 , 0R ⟩ <𝐵 , 0R ⟩ ↔ 𝐴 <R 𝐵 )