Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
2 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
3 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 ) |
4 |
1 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 ) |
5 |
4
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) ∈ ℝ ) |
6 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
8 |
5 7
|
remulcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ∈ ℝ ) |
9 |
1
|
peano2zd |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝑏 + 1 ) ∈ ℤ ) |
10 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑏 + 1 ) ∈ ℤ ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∈ ℕ0 ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∈ ℕ0 ) |
12 |
11
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∈ ℝ ) |
13 |
|
eluz2b2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ) |
14 |
13
|
simprbi |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 1 < 𝐴 ) |
16 |
|
rmxypos |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 < ( 𝐴 Xrm 𝑏 ) ) |
18 |
|
ltmulgt11 |
⊢ ( ( ( 𝐴 Xrm 𝑏 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < ( 𝐴 Xrm 𝑏 ) ) → ( 1 < 𝐴 ↔ ( 𝐴 Xrm 𝑏 ) < ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ) ) |
19 |
5 7 17 18
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 1 < 𝐴 ↔ ( 𝐴 Xrm 𝑏 ) < ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ) ) |
20 |
15 19
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) < ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ) |
21 |
|
rmspecnonsq |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ( ℕ ∖ ◻NN ) ) |
22 |
21
|
eldifad |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ) |
23 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ) |
24 |
23
|
nnred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ ) |
25 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
26 |
25
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
27 |
1 26
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
28 |
27
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ ) |
29 |
23
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ0 ) |
30 |
29
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 ≤ ( ( 𝐴 ↑ 2 ) − 1 ) ) |
31 |
16
|
simprd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) ) |
32 |
24 28 30 31
|
mulge0d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 ≤ ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) |
33 |
24 28
|
remulcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ∈ ℝ ) |
34 |
8 33
|
addge01d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 ≤ ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ↔ ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ≤ ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) ) |
35 |
32 34
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ≤ ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) |
36 |
|
rmxp1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) |
37 |
1 36
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) |
38 |
35 37
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ≤ ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) |
39 |
5 8 12 20 38
|
ltletrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) |
40 |
|
nn0z |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℤ ) |
41 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Xrm 𝑎 ) ∈ ℕ0 ) |
42 |
40 41
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑎 ) ∈ ℕ0 ) |
43 |
42
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑎 ) ∈ ℝ ) |
44 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
45 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) |
46 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑏 ) ) |
47 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑀 ) ) |
48 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑁 ) ) |
49 |
39 43 44 45 46 47 48
|
monotuz |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Xrm 𝑀 ) < ( 𝐴 Xrm 𝑁 ) ) ) |
50 |
49
|
3impb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Xrm 𝑀 ) < ( 𝐴 Xrm 𝑁 ) ) ) |