Step |
Hyp |
Ref |
Expression |
1 |
|
ltrmynn0 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
2 |
1
|
biimpd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
3 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
4 |
3
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ ) |
5 |
4
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ ) |
6 |
|
rmyneg |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm - 𝑏 ) = - ( 𝐴 Yrm 𝑏 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑀 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = - 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm - 𝑏 ) ) |
11 |
2 5 6 7 8 9 10
|
monotoddzz |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) ) |