Metamath Proof Explorer


Theorem ltrn11

Description: One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b 𝐵 = ( Base ‘ 𝐾 )
ltrn1o.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrn1o.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrn11 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ltrn1o.b 𝐵 = ( Base ‘ 𝐾 )
2 ltrn1o.h 𝐻 = ( LHyp ‘ 𝐾 )
3 ltrn1o.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 simp1l ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝐾𝑉 )
5 eqid ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 )
6 2 5 3 ltrnlaut ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) )
7 6 3adant3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) )
8 simp3l ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑋𝐵 )
9 simp3r ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑌𝐵 )
10 1 5 laut11 ( ( ( 𝐾𝑉𝐹 ∈ ( LAut ‘ 𝐾 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ↔ 𝑋 = 𝑌 ) )
11 4 7 8 9 10 syl22anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) ↔ 𝑋 = 𝑌 ) )