Metamath Proof Explorer


Theorem ltrn1o

Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b 𝐵 = ( Base ‘ 𝐾 )
ltrn1o.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrn1o.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrn1o ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : 𝐵1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 ltrn1o.b 𝐵 = ( Base ‘ 𝐾 )
2 ltrn1o.h 𝐻 = ( LHyp ‘ 𝐾 )
3 ltrn1o.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 simpll ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐾𝑉 )
5 eqid ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 )
6 2 5 3 ltrnlaut ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) )
7 1 5 laut1o ( ( 𝐾𝑉𝐹 ∈ ( LAut ‘ 𝐾 ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
8 4 6 7 syl2anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : 𝐵1-1-onto𝐵 )