Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltrn1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| ltrn1o.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| ltrn1o.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | ltrn1o | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrn1o.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | ltrn1o.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 3 | ltrn1o.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | simpll | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐾 ∈ 𝑉 ) | |
| 5 | eqid | ⊢ ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 ) | |
| 6 | 2 5 3 | ltrnlaut | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) ) |
| 7 | 1 5 | laut1o | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐹 ∈ ( LAut ‘ 𝐾 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 8 | 4 6 7 | syl2anc | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |