Metamath Proof Explorer


Theorem ltrncl

Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b 𝐵 = ( Base ‘ 𝐾 )
ltrn1o.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrn1o.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrncl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ltrn1o.b 𝐵 = ( Base ‘ 𝐾 )
2 ltrn1o.h 𝐻 = ( LHyp ‘ 𝐾 )
3 ltrn1o.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 simp1l ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇𝑋𝐵 ) → 𝐾𝑉 )
5 eqid ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 )
6 2 5 3 ltrnlaut ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) )
7 6 3adant3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇𝑋𝐵 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) )
8 simp3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇𝑋𝐵 ) → 𝑋𝐵 )
9 1 5 lautcl ( ( ( 𝐾𝑉𝐹 ∈ ( LAut ‘ 𝐾 ) ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
10 4 7 8 9 syl21anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )