| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrncnv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
ltrncnv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
1 3 2
|
ltrnldil |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 5 |
1 3
|
ldilcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) → ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 6 |
4 5
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 7 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ) |
| 8 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 10 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
| 11 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
| 12 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 13 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 14 |
12 13 1 2
|
ltrncnvel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
| 15 |
8 9 10 11 14
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
| 16 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) |
| 17 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) |
| 18 |
12 13 1 2
|
ltrncnvel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑞 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
| 19 |
8 9 16 17 18
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑞 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
| 20 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 21 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 22 |
12 20 21 13 1 2
|
ltrnu |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ∧ ( ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑞 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 23 |
7 15 19 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 25 |
24 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
| 27 |
24 13
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
10 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) = 𝑝 ) |
| 30 |
26 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) = 𝑝 ) |
| 31 |
30
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) ) |
| 32 |
|
simp1ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐾 ∈ HL ) |
| 33 |
12 13 1 2
|
ltrncnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 34 |
8 9 10 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 35 |
20 13
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) = ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ) |
| 36 |
32 34 10 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) = ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ) |
| 37 |
31 36
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) = ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 39 |
24 13
|
atbase |
⊢ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
16 39
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 41 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) = 𝑞 ) |
| 42 |
26 40 41
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) = 𝑞 ) |
| 43 |
42
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) 𝑞 ) ) |
| 44 |
12 13 1 2
|
ltrncnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 45 |
8 9 16 44
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 46 |
20 13
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) 𝑞 ) = ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ) |
| 47 |
32 45 16 46
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) 𝑞 ) = ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ) |
| 48 |
43 47
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) = ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ) |
| 49 |
48
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 50 |
23 38 49
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 51 |
50
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
| 52 |
51
|
ralrimivv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
| 53 |
12 20 21 13 1 3 2
|
isltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐹 ∈ 𝑇 ↔ ( ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ◡ 𝐹 ∈ 𝑇 ↔ ( ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
| 55 |
6 52 54
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |