Step |
Hyp |
Ref |
Expression |
1 |
|
ltrncnv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ltrncnv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
1 3 2
|
ltrnldil |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
5 |
1 3
|
ldilcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) → ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
6 |
4 5
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
7 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ) |
8 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
10 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) |
11 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) |
12 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
13 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
14 |
12 13 1 2
|
ltrncnvel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
15 |
8 9 10 11 14
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
16 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) |
17 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) |
18 |
12 13 1 2
|
ltrncnvel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑞 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
19 |
8 9 16 17 18
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑞 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
20 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
21 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
22 |
12 20 21 13 1 2
|
ltrnu |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑝 ) ( le ‘ 𝐾 ) 𝑊 ) ∧ ( ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ ¬ ( ◡ 𝐹 ‘ 𝑞 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
23 |
7 15 19 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
25 |
24 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ) |
27 |
24 13
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
28 |
10 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
29 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) = 𝑝 ) |
30 |
26 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) = 𝑝 ) |
31 |
30
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) ) |
32 |
|
simp1ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝐾 ∈ HL ) |
33 |
12 13 1 2
|
ltrncnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ) |
34 |
8 9 10 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ) |
35 |
20 13
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( ◡ 𝐹 ‘ 𝑝 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) = ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ) |
36 |
32 34 10 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) 𝑝 ) = ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ) |
37 |
31 36
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) = ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑝 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑝 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
39 |
24 13
|
atbase |
⊢ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
40 |
16 39
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
41 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) = 𝑞 ) |
42 |
26 40 41
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) = 𝑞 ) |
43 |
42
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) = ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) 𝑞 ) ) |
44 |
12 13 1 2
|
ltrncnvat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ) |
45 |
8 9 16 44
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ) |
46 |
20 13
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( ◡ 𝐹 ‘ 𝑞 ) ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) 𝑞 ) = ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ) |
47 |
32 45 16 46
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) 𝑞 ) = ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ) |
48 |
43 47
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) = ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ) |
49 |
48
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑞 ) ( join ‘ 𝐾 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑞 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
50 |
23 38 49
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ∧ ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
51 |
50
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) → ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
52 |
51
|
ralrimivv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
53 |
12 20 21 13 1 3 2
|
isltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ◡ 𝐹 ∈ 𝑇 ↔ ( ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ◡ 𝐹 ∈ 𝑇 ↔ ( ◡ 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( ◡ 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
55 |
6 52 54
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |