Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnatb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ltrnatb.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
ltrnatb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
ltrnatb.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
1 3 4
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
6 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
7 |
5 6
|
stoic3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
8 |
1 2 3 4
|
ltrnatb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) ) |
9 |
7 8
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 ↔ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) ) |
10 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) = 𝑃 ) |
11 |
5 10
|
stoic3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) = 𝑃 ) |
12 |
11
|
eleq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ↔ 𝑃 ∈ 𝐴 ) ) |
13 |
9 12
|
bitr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑃 ∈ 𝐴 ↔ ( ◡ 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ) |