| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltrnle.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ltrnle.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							ltrnle.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							ltrnle.t | 
							⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐾  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( LAut ‘ 𝐾 )  =  ( LAut ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								3 6 4
							 | 
							ltrnlaut | 
							⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  𝐹  ∈  ( LAut ‘ 𝐾 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant3 | 
							⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐹  ∈  ( LAut ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  | 
						
						
							| 10 | 
							
								1 2 6
							 | 
							lautcnvle | 
							⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝐹  ∈  ( LAut ‘ 𝐾 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑌  ↔  ( ◡ 𝐹 ‘ 𝑋 )  ≤  ( ◡ 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 11 | 
							
								5 8 9 10
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐾  ∈  𝑉  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑌  ↔  ( ◡ 𝐹 ‘ 𝑋 )  ≤  ( ◡ 𝐹 ‘ 𝑌 ) ) )  |