| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrn1o.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ltrn1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
ltrn1o.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
| 5 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 6 |
5
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 7 |
|
f1orel |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → Rel 𝐹 ) |
| 9 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
| 10 |
8 9
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 11 |
|
cnveq |
⊢ ( ◡ 𝐹 = ( I ↾ 𝐵 ) → ◡ ◡ 𝐹 = ◡ ( I ↾ 𝐵 ) ) |
| 12 |
10 11
|
sylan9req |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ◡ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐹 = ◡ ( I ↾ 𝐵 ) ) |
| 13 |
|
cnvresid |
⊢ ◡ ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) |
| 14 |
12 13
|
eqtrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ◡ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐹 = ( I ↾ 𝐵 ) ) |
| 15 |
14
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → ( ◡ 𝐹 = ( I ↾ 𝐵 ) → 𝐹 = ( I ↾ 𝐵 ) ) ) |
| 16 |
15
|
necon3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) → ◡ 𝐹 ≠ ( I ↾ 𝐵 ) ) ) |
| 17 |
4 16
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) → ◡ 𝐹 ≠ ( I ↾ 𝐵 ) ) |