Metamath Proof Explorer


Theorem ltrncoelN

Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel uses. (Contributed by NM, 1-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ltrnel.l = ( le ‘ 𝐾 )
ltrnel.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrnel.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrnel.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrncoelN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 ltrnel.l = ( le ‘ 𝐾 )
2 ltrnel.a 𝐴 = ( Atoms ‘ 𝐾 )
3 ltrnel.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ltrnel.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹𝑇 )
7 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
8 7 3adant2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) )
9 1 2 3 4 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐺𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺𝑃 ) 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑊 ) )
10 5 6 8 9 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺𝑃 ) ) 𝑊 ) )