| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrn1o.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ltrn1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
ltrn1o.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 5 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐺 ∈ 𝑇 ) |
| 6 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
| 8 |
|
f1ococnv1 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 10 |
9
|
coeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( 𝐹 ∘ ( ◡ 𝐺 ∘ 𝐺 ) ) = ( 𝐹 ∘ ( I ↾ 𝐵 ) ) ) |
| 11 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 ∈ 𝑇 ) |
| 12 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 13 |
4 11 12
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 14 |
|
f1of |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → 𝐹 : 𝐵 ⟶ 𝐵 ) |
| 15 |
|
fcoi1 |
⊢ ( 𝐹 : 𝐵 ⟶ 𝐵 → ( 𝐹 ∘ ( I ↾ 𝐵 ) ) = 𝐹 ) |
| 16 |
13 14 15
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( 𝐹 ∘ ( I ↾ 𝐵 ) ) = 𝐹 ) |
| 17 |
10 16
|
eqtr2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 = ( 𝐹 ∘ ( ◡ 𝐺 ∘ 𝐺 ) ) ) |
| 18 |
|
coass |
⊢ ( ( 𝐹 ∘ ◡ 𝐺 ) ∘ 𝐺 ) = ( 𝐹 ∘ ( ◡ 𝐺 ∘ 𝐺 ) ) |
| 19 |
17 18
|
eqtr4di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 = ( ( 𝐹 ∘ ◡ 𝐺 ) ∘ 𝐺 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 21 |
20
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( ( 𝐹 ∘ ◡ 𝐺 ) ∘ 𝐺 ) = ( ( I ↾ 𝐵 ) ∘ 𝐺 ) ) |
| 22 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → 𝐺 : 𝐵 ⟶ 𝐵 ) |
| 23 |
|
fcoi2 |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ 𝐺 ) = 𝐺 ) |
| 24 |
7 22 23
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ∘ 𝐺 ) = 𝐺 ) |
| 25 |
21 24
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → ( ( 𝐹 ∘ ◡ 𝐺 ) ∘ 𝐺 ) = 𝐺 ) |
| 26 |
19 25
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) → 𝐹 = 𝐺 ) |
| 27 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → 𝐹 = 𝐺 ) |
| 28 |
27
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → ( 𝐹 ∘ ◡ 𝐺 ) = ( 𝐺 ∘ ◡ 𝐺 ) ) |
| 29 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 30 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → 𝐺 ∈ 𝑇 ) |
| 31 |
29 30 6
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
| 32 |
|
f1ococnv2 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → ( 𝐺 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → ( 𝐺 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 34 |
28 33
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = 𝐺 ) → ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 35 |
26 34
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) = ( I ↾ 𝐵 ) ↔ 𝐹 = 𝐺 ) ) |