Metamath Proof Explorer


Theorem ltrncom

Description: Composition is commutative for translations. Part of proof of Lemma G of Crawley p. 116. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses ltrncom.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrncom.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrncom ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )

Proof

Step Hyp Ref Expression
1 ltrncom.h 𝐻 = ( LHyp ‘ 𝐾 )
2 ltrncom.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹𝑇 )
5 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐺𝑇 )
6 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 7 1 2 cdlemg47a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
9 3 4 5 6 8 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
10 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐹𝑇 )
12 simpll3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐺𝑇 )
13 simplr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) )
14 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) )
15 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
16 7 1 2 15 cdlemg48 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
17 10 11 12 13 14 16 syl122anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
18 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐹𝑇 )
20 simpll3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → 𝐺𝑇 )
21 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) )
22 1 2 15 cdlemg44 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
23 18 19 20 21 22 syl121anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐹 ) ≠ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝐺 ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
24 17 23 pm2.61dane ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 ≠ ( I ↾ ( Base ‘ 𝐾 ) ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )
25 9 24 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )