| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrneq.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ltrneq.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
ltrneq.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
ltrneq.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
|
ltrneq.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
| 7 |
|
eqid |
⊢ ( LAut ‘ 𝐾 ) = ( LAut ‘ 𝐾 ) |
| 8 |
4 7 5
|
ltrnlaut |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( LAut ‘ 𝐾 ) ) |
| 10 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 11 |
|
simplll |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ≤ 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
simpllr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ≤ 𝑊 ) → 𝐹 ∈ 𝑇 ) |
| 13 |
1 3
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ≤ 𝑊 ) → 𝑝 ∈ 𝐵 ) |
| 15 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ≤ 𝑊 ) → 𝑝 ≤ 𝑊 ) |
| 16 |
1 2 4 5
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑝 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) |
| 17 |
11 12 14 15 16
|
syl112anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) |
| 18 |
17
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
| 19 |
|
pm2.61 |
⊢ ( ( 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
| 21 |
20
|
ralimdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) |
| 24 |
1 3 7
|
lauteq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ ( LAut ‘ 𝐾 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑝 ∈ 𝐴 ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 25 |
6 9 10 23 24
|
syl31anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
| 26 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 27 |
26
|
adantl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝑥 ) = 𝑥 ) |
| 28 |
25 27
|
eqtr4d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ) |
| 30 |
1 4 5
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 32 |
|
f1ofn |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → 𝐹 Fn 𝐵 ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → 𝐹 Fn 𝐵 ) |
| 34 |
|
fnresi |
⊢ ( I ↾ 𝐵 ) Fn 𝐵 |
| 35 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵 ) Fn 𝐵 ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ) ) |
| 36 |
33 34 35
|
sylancl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = ( ( I ↾ 𝐵 ) ‘ 𝑥 ) ) ) |
| 37 |
29 36
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) → 𝐹 = ( I ↾ 𝐵 ) ) |
| 38 |
37
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) → 𝐹 = ( I ↾ 𝐵 ) ) ) |
| 39 |
13
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
| 40 |
|
fvresi |
⊢ ( 𝑝 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) |
| 42 |
|
fveq1 |
⊢ ( 𝐹 = ( I ↾ 𝐵 ) → ( 𝐹 ‘ 𝑝 ) = ( ( I ↾ 𝐵 ) ‘ 𝑝 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( 𝐹 = ( I ↾ 𝐵 ) → ( ( 𝐹 ‘ 𝑝 ) = 𝑝 ↔ ( ( I ↾ 𝐵 ) ‘ 𝑝 ) = 𝑝 ) ) |
| 44 |
41 43
|
syl5ibrcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐹 = ( I ↾ 𝐵 ) → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) |
| 45 |
44
|
a1dd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐹 = ( I ↾ 𝐵 ) → ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ) |
| 46 |
45
|
ralrimdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 = ( I ↾ 𝐵 ) → ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ) ) |
| 47 |
38 46
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ∀ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 → ( 𝐹 ‘ 𝑝 ) = 𝑝 ) ↔ 𝐹 = ( I ↾ 𝐵 ) ) ) |