Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnldil.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
ltrnldil.d |
⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
ltrnldil.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
8 |
4 5 6 7 1 2 3
|
isltrn |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝑇 ↔ ( 𝐹 ∈ 𝐷 ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( 𝐹 ‘ 𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝐷 ) |