Metamath Proof Explorer


Theorem ltrnldil

Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnldil.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrnldil.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
ltrnldil.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrnldil ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹𝐷 )

Proof

Step Hyp Ref Expression
1 ltrnldil.h 𝐻 = ( LHyp ‘ 𝐾 )
2 ltrnldil.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
3 ltrnldil.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
6 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
7 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
8 4 5 6 7 1 2 3 isltrn ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐹𝑇 ↔ ( 𝐹𝐷 ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑊 ∧ ¬ 𝑞 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝐹𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑞 ( join ‘ 𝐾 ) ( 𝐹𝑞 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) )
9 8 simprbda ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹𝐷 )