Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnmw.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
ltrnmw.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
ltrnmw.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
ltrnmw.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
ltrnmw.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
ltrnmw.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
9 |
1 2 3 4 5
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = 0 ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = 0 ) |